Nisa, Al-Amanah (2025) PREDIKSI HASIL PANEN IKAN BANDENG DI SIDOARJO BERDASARKAN CURAH HUJAN MENGGUNAKAN METODE MOVING AVARAGE DAN TRIPEL EXPONENTIAL SMOOTING. Sarjana thesis, Universitas Nahdlatul Ulama Sidoarjo.
SI_SKRIPSI_21421022_Nisa Al-Amanah_Prediksi Hasil Panen Ikan Bandeng DiSidoarjo Menggunakan Metode Moving Avarage dan Triple Exponential Smoothing - nisa alamanah.pdf
Restricted to Registered users only
Download (4MB)
Abstract
Produksi ikan bandeng merupakan salah satu sektor penting dalam budidaya perikanan di Kabupaten Sidoarjo, Jawa Timur. Penelitian ini bertujuan untuk menganalisis tren dan pola musiman produksi ikan bandeng serta mengetahui pengaruh curah hujan terhadap hasil panen. Data yang digunakan berupa data deret waktu bulanan dari Januari 2018 hingga Desember 2023, mencakup hasil panen ikan bandeng (dalam kilogram) dan curah hujan (dalam milimeter). Dua metode peramalan yang diterapkan dalam penelitian ini adalah Moving Average (MA) dan Triple Exponential Smoothing (TES) atau Holt-Winters. Hasil analisis menunjukkan bahwa meskipun curah hujan memiliki variasi musiman yang konsisten, korelasi antara curah hujan dan produksi ikan bandeng sangat lemah (r = -0,04). Pola produksi ikan bandeng cenderung dipengaruhi oleh faktor musiman dan tren jangka panjang, bukan curah hujan secara langsung. Evaluasi kinerja model menunjukkan bahwa metode Holt-Winters memberikan hasil prediksi yang lebih akurat dibandingkan Moving Average, dengan nilai MAE = 34.157,01 kg, MAPE = 1,07%, RMSE = 40.552,02 kg, dan R² = 1,00. Model ini kemudian digunakan untuk memprediksi produksi ikan bandeng selama tahun 2024–2030, yang menunjukkan pola musiman stabil dan tren produksi yang cenderung meningkat.
========================================================================================================================
Milkfish production is a crucial sector in aquaculture development in Sidoarjo Regency, East Java. This study aims to analyze trends and seasonal patterns in milkfish production and to examine the effect of rainfall on harvest yields. The data used consists of monthly time series from January 2018 to December 2023, including milkfish harvest data (in kilograms) and rainfall (in millimeters). Two forecasting methods were applied in this study: Moving Average (MA) and Triple Exponential Smoothing (TES) or Holt-Winters. The analysis showed that although rainfall exhibits consistent seasonal variations, its correlation with milkfish production is very weak (r = -0.04). Milkfish production is more strongly influenced by seasonal patterns and long- term trends rather than rainfall. Model performance evaluation indicates that the Holt-Winters method provides more accurate forecasting results compared to Moving Average, with MAE = 34,157.01 kg, MAPE = 1.07%, RMSE = 40,552.02 kg, and R² = 1.00. This model was then used to predict milkfish production for 2024–2030, which showed stable seasonal patterns and a gradually increasing production trend.
| Item Type: | Thesis (Sarjana) |
|---|---|
| Uncontrolled Keywords: | Kata kunci : Ikan Bandeng, Curah Hujan, Moving Average, Triple Exponential Smoothing, Prediksi Produksi, Time Series Keywords : Milkfish, Rainfall, Moving Average, Triple Exponential Smoothing, Production Forecast, Time Series |
| Subjects: | T Technology > T Technology (General) |
| Divisions: | Fakultas Ilmu Komputer > Sistem Informasi |
| Depositing User: | Perpustakaan UNUSIDA |
| Date Deposited: | 01 Dec 2025 03:29 |
| Last Modified: | 01 Dec 2025 03:29 |
| URI: | http://digilib.repository.unusida.ac.id/id/eprint/856 |

